
DeepBoard: A Smart Touch Keyboard with Private
Prediction of User Photos using Deep Neural Networks

Richard Sicoli
Stony Brook University

richard.sicoli@stonybrook.edu

ABSTRACT
Most mobile operating systems and user applications support
the ability to insert user photos from the device directly into
the given document or message. The problem is that this of-
ten requires the user to perform several steps to insert the in-
tended photo. DeepBoard solves this problem by automat-
ically predicting which photo the user intends on inserting
based on the semantics of the given document or message.
This allows the user to insert a photo significantly faster com-
pared to the default interface found on most mobile applica-
tions. Furthermore, DeepBoard runs locally on the device,
which means a user does not need to sacrifice any privacy as
there is no dependence on an internet connection.

Author Keywords
Smart touch keyboard; photo prediction; deep convolutional
neural networks; privacy;

INTRODUCTION
Inserting photos into a message or document is a common
task that users perform on their mobile device frequently. Yet
users still need to perform multiple steps in order to com-
plete this task, such as traversing through interface layers and
searching through sometimes thousands of photos to find the
intended photo. Furthermore, each application is usually del-
egated with handling its own photo insertion interface, which
results in an inconsistent user experience across the device.
And while there has been some related work on implementing
keyboards with basic web-search support [2], none pertain to
the problem of inserting user photos.

DeepBoard attempts to solve these issues by automatically
predicting which photo or photos the user intends to insert
based on the semantics of the given text message or docu-
ment. The user can then select the desired photo through the
use of a dynamic interface presented directly on the keyboard.
This allows the user to type a message and insert a photo with-
out ever needing to search for the photo manually. And since
this interaction is tied directly to the keyboard, this action can
be performed any time the user is typing across the entire op-
erating system.

Several models are used to interpret the user’s text and predict
the intended photo or photos. DeepBoard takes advantage
of the success of deep convolutional neural networks [6] to
classify photos into categories and link the categories to the
text semantics through various natural language processing

(NLP) techniques. Furthermore, DeepBoard handles all pro-
cessing completely local to the device, which means no ex-
ternal server is required for DeepBoard’s functionality. This
provides the added benefit of user privacy and for use without
an internet connection. In the following sections, we will look
at the exact details of the design as well as an early evaluation
of the system.

RELATED WORK
Surprisingly, little to no work (to the best of our knowledge)
has been done to develop a keyboard interface for user photo
prediction. There has been previous work on text prediction
and even emoji prediction [2], but none involving the predic-
tion of user photos. Similar work has been done for photo
search, where a user enters a query to search their photos in
a photo application such as iOS Photos, or Google Photos.
However, this is not a photo prediction based on the user’s
message or document, instead the user still needs to manu-
ally enter a query for the intended photo. Furthermore, this
has not been done within the context of smart touch keyboard
interfaces.

There exist smart touch keyboards such as Gboard which fea-
ture an integrated web-search directly into the keyboard [2].
An example of this is shown in figure 2. This allows a user
to perform a web-search within the keyboard for a particu-
lar photo. However, as discussed previously, this is not a
photo prediction based on the user’s message or document,
but rather a manual web query. Additionally, this does not
search the user’s photos, but instead only searches photos on
the web.

DEEPBOARD
DeepBoard is a smart touch keyboard that is designed to solve
the problems with photo insertion. The following three de-
sign principles are what make DeepBoard a novel system for
this task.

• Predicts the photo a user intends on inserting based on the
semantics of the message or document. No manual search
or additional steps are needed.

• Provides a dynamic interface for smart touch keyboards for
quickly selecting the intended photo.

• Works entirely local to the device, which means no privacy
concerns and no internet connection required.

Photo prediction and insertion

1



Figure 1. The three step process to use DeepBoard. From left to right, first the user enters a message. Then they press the “Predict Photos Button” in
the upper left corner. This will return a list of predicted photos based on the context of the message. In this case, photos for the words “Laptop” and
“Cat” were returned. The user can choose to tap on a word to switch between photo categories. Lastly the user taps on the intended photo and inserts
it.

Photo Prediction and insertion is performed by the user in
three steps. Figure 1 shows an example of this three step
process.

1. A user first types some text into a rich text view. This could
be an email, message, document etc.

2. Then the user presses the “Predict Photos” button found in
the top left corner of figure 1. This will present the user
with an interface directly within the keyboard (as shown in
figure 1) for selecting the desired photo. DeepBoard will
show the photos for each dominant words it has detected.
The user can choose to tap a word to reveal the correspond-
ing photos.

3. When the user is ready, they simply select and insert the
desired photo directly into the message or document.

Note that photos may be tagged as multiple words if the photo
can be classified into multiple categories. This is especially
useful for users to find their intended photo regardless of the
words they use to describe it.

For example, in figure 1, the message is classified under both
“laptop” and “cat”. The user could choose either one to reach
their desired photo. Also note that words which there are no
photos for are not displayed to reduce interface clutter.

Indexing
It should be noted that, before DeepBoard can begin to predict
photos, it first needs to process and index every photo on the

device. This allows DeepBoard to quickly process all future
predictions which is essential when developing a responsive
keyboard. The indexing stage may take a few seconds to a
minute depending on how many photos the user has and the
speed of the device processor. The indexing stage only needs
to be completed once, and then again for each new photo the
user adds to their library. However, the time needed for in-
dexing new photos is virtually instantaneous.

It should also be noted that the user can still interact with
DeepBoard as the photos are indexed as this process hap-
pens asynchronously. If the user issues a photo prediction
command while the system is indexing, only the currently in-
dexed photos will appear. The user can see if DeepBoard is
currently indexing by the progress bar at the bottom of the
keyboard, as shown in figure 3. Furthermore, during testing,
we found that no noticeable loss of responsiveness occurred
during the indexing phase.

IMPLEMENTATION AND DESIGN

Keyboard layout
DeepBoard was developed for all supported iOS devices and
works on all sizes and orientations. No feature is dependent
on iOS which makes an Android version entirely possible as
well. DeepBoard was developed as a standard QWERTY key-
board with several baseline “smart” features that users expect
from a smart touch keyboard, such as auto-correct and pre-
dictive text. The auto-correct and predictive text are based on

2



Figure 2. Screenshot of the web search feature of Gboard.

edit distance and augmented with an n-gram language model
trained on a Twitter corpus. While the primary focus was
on the development of the photo prediction, it was important
to develop a sufficient baseline keyboard for users to interact
with during the evaluation phase.

Photo retrieval
DeepBoard uses a photo identifier for every photo for efficient
retrieval of user photos. This means DeepBoard itself does
not need to store any copies of user photos but instead an
identifier used to fetch photos whenever necessary.

This is essential to save both storage space as well as memory
as photos can be efficiently fetched from the device using sys-
tem APIs. Photos are fetched during the indexing phase when
the photos propagate through the deep learning model and
during the prediction phase where photos are fetched based
on the semantic analysis of the text.

The implementations of the deep learning model and the se-
mantic analysis are detailed in the next sections.

Deep convolutional neural networks
DeepBoard takes advantage of deep convolutional neural net-
works for photo classification. Convolutional neural net-
works have seen great success in image classification tasks
and are state of the art for this task [6]. DeepBoard uses a pre-
trained model, MobileNets, for classifying the user’s photos
into 1000 categories. MobileNets was selected for this task
because it is specifically developed for mobile and embedded

Figure 3. The DeepBoard indexing phase.

devices [5]. MobileNets features a low latency and relatively
small model size which is essential when running a respon-
sive keyboard service on a mobile device.

Figure 4 shows the architecture of the MobileNets network.
The input to the model is a multi-channel image (re-sized to
224x224) and, after a series of primarily convolutional lay-
ers, the model outputs probabilities for the 1000 classes us-
ing a softmax classifier. These probabilities are then used by
DeepBoard to map user photos to distinct common categories
so that the intended photos can be retrieved based on the user
text.

It should also be noted that photos are only ever fed into the
model during the indexing stage and for any future photos
that the user takes. As discussed above, this process takes
anywhere from a few seconds to a minute depending on the
number of photos, however once complete the model will not
need to process existing photos and the prediction can occur
near instantaneously.

Semantic analysis
We have seen how the convolutional neural networks are used
to classify the user photos. Now we will look at how they are
mapped to the semantics of the text.

When a user presses the “Predict Photos” button, DeepBoard
first starts by extracting the text in the current text container.
Priority is given to text nearest to the cursor in cases when
a large amount of sentences are present, such as in a docu-
ment. This text will serve as the key contextual information
for predicting the corresponding photos.

A naive approach would be to then directly compare the text
to the image classifier labels, and if there is a match we
present the relevant photos for that category. However, this
has two major problems. First, this will only work for words
which match the classifier labels exactly. So words which
are semantically similar (e.g. synonyms, hypernyms) will not
map to the intended category. Secondly, there will be too
much noise from just extracting all words. We want to be able
to prune the input sentence and extract only the key words
which the user is interested in.

We solve these issues with the following approach. First, af-
ter the text is extracted, it is tokenized and passed through a

3



Figure 4. The MobileNets architecture.

part-of-speech tagger for extracting the dominant nouns from
the text. The dominant nouns are then compared to a custom
lexical database of semantically linked words to determine
which classes are relevant to the input text. This database is
developed from portions of the WordNet database [4]. The
WordNet database is a popular lexical database which links
words by semantical relationships. Figure 5 shows an exam-
ple of this.

The process of creating the custom database using WordNet
for the classifier labels is as follows:

1. Iterate over all labels in the classifier.

2. For each label, extract its synonyms, hypernyms and hy-
ponyms using WordNet.

3. Repeat this process a few times on the extracted words to
build a tree of the semantically linked words for the given
label.

4. Store the result in the custom database for the associated
label.

The end result will be a portion of the WordNet database that
is relevant only to the classifier labels. This makes the custom
database very small and efficient for DeebBoard to use for
class look-ups.

CHALLENGES AND LIMITATIONS
Developing any system for a mobile device has its challenges,
but developing a keyboard service for the said device comes
with even greater constraints. A custom smart touch keyboard

Figure 5. Structure of the WordNet lexical database.

has both memory and processing limits. We found these lim-
its to be especially true on iOS, where the OS would kill the
process with sometimes no warning. Furthermore, a smart
touch keyboard needs to be responsive enough for the user to
feel comfortable using.

We could have solved some of these issues by performing the
work on a server, but this would violate the privacy design
principle of DeepBoard. Instead, multiple device-level opti-
mizations are used to guarantee responsiveness and efficient
handling of resources.

Model sizes
Every model that DeepBoard uses internally is designed to
consume as little memory and processing as possible. The
pre-trained MobileNets model was specifically designed for
mobile and embedded devices, so it consumes a relatively
small amount and offers the benefit of low latency process-
ing. This was essential for fast and efficient processing of
user photos during the indexing phase. The custom semantic
relational database also consumes little space as it was only
designed from a small portion of the WordNet database.

It is possible to integrate larger models or additional models
for improved accuracy and expanded coverage, but the device
performance quickly becomes a limiting factor. Even with the
deep learning model we currently use, it can take upwards of
a minute to process every photo on the device. Additionally,
the memory usage of DeepBoard already consumes roughly
80% of the available memory.

Hardware acceleration
One of the primary reasons for the deep learning model’s
efficiency is the use of hardware accelerated APIs available
on iOS devices. DeepBoard uses Apple’s recently developed
Core ML API [1] for efficient on-device performance and low
memory footprint.

Privacy
Privacy challenges and limitations exist when developing sys-
tems that process some form of user data. As discussed ear-
lier, DeepBoard handles all processing local to the device, but
even with this approach, there are still privacy challenges we

4



encounter. For example, we were unable to automatically in-
sert the user photos directly into the rich text view due to iOS
privacy restrictions. Instead the user must perform this action
through the system clipboard via a copy-and-paste action.

Other privacy restrictions exist for third party keyboards on
iOS as well. For example, no custom keyboard is given access
to the microphone [3].

EARLY EVALUATION
In this section, we will look at an early evaluation of the
DeepBoard keyboard using a small informal user study. A
large formal user study is still needed, but this early evalua-
tion provides some preliminary data on how well DeepBoard
is currently performing.

Experiment considerations
It was a challenge designing an experiment to evaluate our
system. There are currently no other keyboards that do photo
prediction, and there are only certain times when a user plans
on inserting a photo, so it’s not a continuous process. We
could have done a systematic evaluation of the model on pairs
of text and photos, but developing a dataset for this task would
take too much time and the results may not translate well to
real user interactions. It was decided that a real-world exper-
iment of the system with a few users would make for the best
initial evaluation.

For the experiment, we decided to compare DeepBoard to the
default iOS messaging app, iMessage. There are two reasons
for this decision.

Consistency
The first reason is because there is no mechanism to insert
photos using the default keyboard. Instead, each application
handles its own insertion mechanism. So for consistency rea-
sons, it makes sense to have a common application to com-
pare to. The iMessage app is also a fair (and challenging)
comparison because it is designed for users to send photos
quickly.

Data collection
The second reason for using iMessage is because we could
gather the most data as the users in the experiment used iMes-
sage the most for sending photos. If we had picked a less
popular application for sending photos, we would not have
received enough data to make any interesting observations.

Experiment procedure
The experiment was conducted as follows. Three users were
asked to install DeepBoard on their iOS devices. Each time
a user sent a photo in iMessage using the “Predict Photos”
feature, DeepBoard recorded the time it took for the user to
insert the photo. The user would then manually time how long
it took to insert the same photo using the default keyboard in
iMessage. The user would also record if their intended photo
was not predicted by DeepBoard.

Experiment assumptions
• As discussed above, the test was done only with the iMes-

sage application.

DeepBoard (seconds) Default Keyboard (seconds)
Count 20 20
Min 3.8 3.3
Max 9.8 19.3
Med 5.4 6.9
Avg 5.6 8.9

Std Dev 1.3 5.1
Table 1. The results for the time taken to insert a photo in iMessage
using DeepBoard vs the default keyboard.

• Photos which DeepBoard failed to predict did not have the
time recorded. This is because it is useful to understand
how well DeepBoard performs when it’s working.

• Only the photo categories DeepBoard supports were used.
This is because the model can be trained on any arbitrary
categories, so it is more useful to understand how well
DeepBoard performs on the given categories.

Results
The results of the experiment are shown below in table 1. The
total number of predictions collected across all three users
was 20. The time recorded is the amount of time (in seconds)
it took for the user to insert the photo into the message. Deep-
Board performed faster on average compared to the default
iMessage keyboard. The iMessage keyboard also had a larger
variance in time. Both keyboards have roughly the same best
case insertion time, while the default iMessage keyboard has
a poor worst case insertion time. The photo prediction accu-
racy for DeepBoard was defined as the number of times the
intended photo was predicted divided by the total number of
times the user requested a prediction. We report a photo pre-
diction accuracy of 0.77.

Feedback
The feedback we received for DeepBoard was overall posi-
tive. Users reported that when DeepBoard found their photo,
the experience felt really satisfying. Users found the dynamic
list of available categories very useful for quickly selecting
the intended photo. Users reported that for recent photos, the
experience on both keyboards was roughly the same, but for
non-recent photos, DeepBoard saved them a large amount of
time. Some users said that they wished this functionality was
built into the standard keyboard.

Users were also asked about the responsiveness of Deep-
Board, and if they noticed any latency issues, particularly dur-
ing the indexing and prediction phases. All users reported that
there were no noticeable responsiveness issues at any point.

There were also some criticisms of DeepBoard. Some users
reported that sometimes the intended photo did not appear
and/or the category did not appear. Other users reported that
they wanted a way to view all photos for cases when the pre-
diction process fails. Users also expressed that they wanted a
way to correct missing or wrong classifications. One user said
that it would be nice to have a “recents” section in addition to
the prediction.

Discussion

5



While this is only an early evaluation and not a formal user
study, we can still draw some interesting information from the
results and the user feedback. The initial feedback and results
suggest that DeepBoard indeed helps solve the problems with
user photo insertion. DeepBoard allowed for faster photo in-
sertion times on average and received positive feedback from
the users.

One interesting outcome of the experiment is the effect of re-
cent photos on the data. It appears that in cases when the
photo is recent, both DeepBoard and the default iMessage
keyboard perform similarly. This makes sense because the
default iMessage keyboard has an interface for recent photos
which doesn’t require the user to traverse their photos. How-
ever in cases where the intended photo was not recent, the
user then must search through all of their photos which could
take potentially a lot of time. This makes photo prediction
much more useful in these scenarios.

The data agrees with these findings and user feedback as well.
We see that the default iOS keyboard had a greater variance
and greater worst case which could result from the skew in
time when photos were not recent.

Lastly, it is important to consider not just how fast DeepBoard
performs at predicting but how accurate it is. As shown ear-
lier, DeepBoard scored an accuracy of 0.77, meaning it cor-
rectly predicted the intended photo 77% of the time in our
experiment.

This is a promising number for a few reasons. First, this is
not just a classification problem, but instead there are mul-
tiple layers of models the text input must propagate through
successfully in order for the intended photo to be predicted.
For example, a photo may be classified correctly but the se-
mantic analysis could fail for a particular word and the photo
would not appear. Secondly, the results are similar to the ex-
pected classification accuracy in existing work [5].

PROFILING
We have seen how DeepBoard performs in a real-world ex-
periment. Now we will look at the exact memory and CPU
requirements of DeepBoard during normal use.

To do this, we have used the device profiler in Apple’s Xcode
to measure device performance while using DeepBoard. We
profiled DeepBoard on an iPhone 6 running iOS 11.

Note that the device was not in the indexing phase when we
profiled. The reason for this is because the bulk of the index-
ing phase only occurs once. We want to instead test how the
device performs under normal use.

Figure 6 shows these results as reported from Xcode. We
have found that our system under normal use consumes very
little CPU and is marked with zero average energy impact.
As shown in the last chart in figure 6, the CPU usage varies
depending on when the user issues a photo prediction com-
mand. These results agree with the user feedback as users
reported no noticeable responsiveness issues.

In terms of memory usage, our system is almost pushing the
limits [3]. Despite the look of the chart, the CPU usage limit

Figure 6. CPU usage, memory usage and battery impact of DeepBoard.

for keyboard extensions is around 30 MB. DeepBoard is con-
suming roughly 80% of this limit. Note that this is not neces-
sarily a hard cap and may vary on newer devices. Regardless,
DeepBoard is under this limit.

FUTURE WORK
There is certainly more room to improve DeepBoard. For
starters, the user feedback suggests that users would like an
interface for recent photos and the ability to view all photos
for cases when the prediction fails. Users also wanted a way
to correct incorrect predictions as well.

There is also a lot more room to improve the models as well.
For example, we could use additional context such as loca-
tion, contacts or current activity to help improve which pho-
tos to predict. We could train the model on a custom dataset
that is more appropriate for user photo data and integrate ad-
ditional models for increased prediction coverage.

Lastly, more work is needed in a formal user study. While
the early evaluation is certainly useful, a proper formal user
study could help reveal much more about the system and its
use cases. We already have received useful feedback from
just a few users, so a more developed study could certainly
help improve DeepBoard.

CONCLUSION
We have seen how DeepBoard attempts to solve the problems
with adding photos to messages or documents. Currently, it
can take multiple steps for a user to search through their pho-
tos for the intended photo. However, DeepBoard uses the
concept of keyboard photo prediction in order to present the
user with photos based on the semantics of the text in the
message or document. We have seen based on the evaluation
and feedback that this offers an improvement over the default
system keyboard in the popular messaging app, iMessage.

6



We have also seen the various optimizations and how Deep-
Board retains its responsiveness despite the challenges of run-
ning deep learning models on mobile devices. We have also
profiled DeepBoard to confirm this to be true.

DeepBoard is the only keyboard with photo prediction (to the
best of our knowledge), so there is still much more room for
others to work on this technology. We believe the concept of
user photo prediction for keyboards is a novel concept that
users would find very useful in their daily tasks.

REFERENCES
1. Core ML. https:

//developer.apple.com/documentation/coreml.

2. Google Gboard. https:
//itunes.apple.com/us/app/gboard/id1091700242.

3. iOS Keyboard Extension. https://developer.apple.
com/library/content/documentation/General/
Conceptual/ExtensibilityPG/CustomKeyboard.html.

4. Fellbaum, C. WordNet: An Electronic Lexical Database.
Bradford Books, 1998.

5. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam, H.
Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint
arXiv:1704.04861 (2017).

6. Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems
(2012), 1097–1105.

7

https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://itunes.apple.com/us/app/gboard/id1091700242
https://itunes.apple.com/us/app/gboard/id1091700242
https://developer.apple.com/library/content/documentation/General/Conceptual/ExtensibilityPG/CustomKeyboard.html
https://developer.apple.com/library/content/documentation/General/Conceptual/ExtensibilityPG/CustomKeyboard.html
https://developer.apple.com/library/content/documentation/General/Conceptual/ExtensibilityPG/CustomKeyboard.html

	Introduction
	Related Work
	DeepBoard
	Photo prediction and insertion
	Indexing

	Implementation and Design
	Keyboard layout
	Photo retrieval
	Deep convolutional neural networks
	Semantic analysis

	Challenges and Limitations
	Model sizes
	Hardware acceleration
	Privacy

	Early Evaluation
	Experiment considerations
	Consistency
	Data collection

	Experiment procedure
	Experiment assumptions

	Results
	Feedback
	Discussion

	Profiling
	Future Work
	Conclusion
	REFERENCES 

