
Real-Time Human Activity Recognition using Convolutional Neural Network on
Time Series from Mobile Sensors

Richard Sicoli, Zhe Lin
CSE 570 - Final Report
Stony Brook University

12/19/17

Abstract
Many health related applications such as Google Fit

and Apple Health are becoming increasingly popular due
to the large number of sensors found in mobile phones and
smartwatches today. These embedded sensors allow
mobile devices to track how many steps a user takes or
even track a user’s activity throughout the day.

However, detecting the actions a user is taking from
mobile sensors can be a challenging task due to the large
variability in motion when performing an activity.
Traditional methods typically use manual feature design
and heuristics. Our model, however, uses the power of
deep convolutional neural networks to automatically learn
important features directly from the raw time series signal
captured from the mobile sensors. To demonstrate this, we
have created a custom dataset from recording the motion
of eight activities with a phone placed in a user’s pocket.
We show that our model achieves remarkable results on
classifying each activity. Furthermore, we demonstrate the
capability of real-time activity recognition by running the
model locally on an iOS device.

1. Introduction
Convolutional neural networks have seen remarkable

results in fields such as Computer Vision due to the recent
surge in GPU performance [1]. We decided to apply them
in a similar manner but to 1D time series data with
multiple feature channels. This would allow us to capture a
large amount of raw data and feed it directly into the
model with very little preprocessing and no feature-
engineering required. Instead, the convolutional neural
network would learn the features that differentiate the
various activities.

After training the model on our dataset of 8 activities,
we evaluated the model and then loaded it on to an iOS
device for local real-time activity recognition. In this
paper, we will look at the data collection methods and
network architecture. We will also look at the evaluation
of the model on our test set as well as the performance of
the model running in real-time on an iOS device.

1.1 Setup
Training was done on a desktop PC using Tensorflow/

Keras for python using a GTX 1070 GPU. Raw motion

data was collected using Core Motion API on iPhone 6
using Objective-C. The model was loaded on the iOS
device using Apple’s hardware accelerated Core ML
framework which was just introduced this year.

2. Dataset
The dataset was created from recording the motion of 3

users doing eight activities at a variety of locations.
Multichannel time series data was recorded from the three-
axis accelerometer of an iPhone 6. We experimented with
including the rotational data from the gyroscope but found
that the accelerometer alone was sufficient. So we opted to
just use the accelerometer to reduce the dimensionality of
the data during training.

Unlike some previous experiments which placed the
iOS device in a custom harness [2], we decided to simply
place the device in the pants pocket, which is a less
controlled setting. The initial orientation of the device was
assumed to be constant. Below is a list of all eight
activities.
‣ Walking
‣ Jogging
‣ Sitting
‣ Standing
‣ Going Downstairs
‣ Going Upstairs
‣ Jumping
‣ Cycling

Figure 1: Three-axis accelerometer used for measuring
change in velocity along each axis.

Each activity was recorded for a sum of 20 minutes at a
sampling rate of 60 Hz for a total of 160 minutes and
576,000 3D sample points. Data was then normalized to
zero mean and unit variance. Then a one second window
was applied over the time series data to create 9600 unique
3D segments or 1200 3D segments per activity. Finally the
segments were randomly shuffled and uniformly
distributed into a 0.60, 0.20, 0.20 split for training,
validation and testing respectively.

Figure 2: The mobile device was placed in the pants
pocket with a constant initial orientation.

W
al

k

Jo
g

Si
t

St
an

d

D
ow

n

U
p

Ju
m

p

C
yc

le

The Complete Dataset

Figure 3: A plot of every sample point in the dataset for each channel. Each activity was recorded for a sum of 20 minutes
at a sampling rate of 60 Hz for a total of 160 minutes and 576,000 3D sample points. The data is marked with separation
lines to show where each activity is. Note the data in this plot is normalized to have zero mean and unit variance which is
why the acceleration is centered at 0.

Figure 4: A close look at the time series for each activity in order to better visualize the patterns. Each dashed line
corresponds to the one second window (60 Hz) we use to create segments. So the model only ever sees a small fraction of
this signal. Note the ordering from left to right going down each row: Walk, Jog, Stand, Down-stairs, Jump, Cycle, Sit ,Up-
stairs.

3. Network Architecture
Our architecture uses a standard deep convolutional

network design. Convolutional neural networks are useful
for (1) capturing local dependency of the time series
signals and (2) being invariant to displacements in the
signal. Our convolutional neural network layers use 64
filters with a window size of three with strides of one and
a rectified linear unit (ReLU) for the activation function.
We use multiple convolutional layers so the model can
learn more complex signal pattern abstractions from the
earlier feature map layers.

Furthermore, we downsample by appending a max
pooling layer after each convolutional layer to further
increase invariance to distortions. We then flatten the final
feature maps to a 512 length vector which represents the
high level features and connect them to a fully connected
layer followed by a dropout layer with a rate of 0.5 to help
reduce overfitting. Finally we connect the output layer
which we use as a softmax classifier for the eight classes.
See figure 5 for the exact details of the network
architecture.

3.1 Training
Our model was built and trained using Keras/

TensorFlow. For the loss function we use categorical cross
entropy with stochastic gradient descent (SGD).
Furthermore we use a batch size of 32 and a learning rate
of 0.01.

As discussed earlier, we randomly shuffled and
uniformly distributed the dataset into a 0.60, 0.20, 0.20
split for training, validation and testing respectively. The
model was trained on 5,760 60x3 segments. Each segment
represents one second (60 Hz) of 3 channel time series
data.

Our model began to converge fairly quickly after about
50 epochs. Once we were satisfied with our results on the
validation set, we moved on to testing.

Figure 6: Accuracy and loss during training. As shown above, our network begins to converge after 50 epochs. The network
also shows impressive results on the validation set.

Figure 5: Details of the network architecture. Note that we used
padding which is why the length of the signal remains the same
after convolution.

4. Evaluation
After tuning our model on the validation set, we ran the

model one time on the test set and report the results below.
Note that our model was tested on 1920 3D segments
which is 240 3D segments per class. We report an overall
accuracy of 0.974. Overall we are very pleased with the
results of our model. Below is a confusion matrix for
specific details.

According to the data in the confusion matrix, upstairs
and downstairs were the hardest for the network to
classify. It’s also interesting how most of the bad
predictions were predicted as walking. The reason for
most of the misclassifications are most likely due to noise
when recording data. For example, when recording an
activity there were times when an activity may have been
interrupted by obstacles or other pedestrians. This can
skew the data and create distortions that the model can’t
resolve. Furthermore, since the phone was placed in the
pocket, it may have shifted too much if in a loose pocket.

Despite these sources of uncertainty, the model still
managed to learn the features to differentiate the activities
with remarkable accuracy.

It is important to note that our dataset was collected
from a small number of users (only three). And while the
data was collected at a variety of times and locations, the
model may have trouble generalizing if used by new users
with different body shapes and different movement
behaviors. This could be resolved by creating an even
larger dataset with more users.

5. Mobile Application
We have developed a mobile application for both

logging data (to create the dataset) and real-time activity
recognition. The app was developed for iOS using
Objective-C. Data is recorded from the accelerometer
using the Core Motion API. The model runs on the iOS
device using Apple’s Core ML which was introduced just
this year. Core ML is a framework for integrating pre-
trained models into an application and allows the model to
take advantage of hardware acceleration for optimal
performance.

It is important to note that the model runs locally on the
iOS device and no data is transferred over a network to a
server. This allows the iOS device to process data in real-
time and prevent the user’s private information from
leaving the device. When profiling our app, we found that
continuously recording from the accelerometer at a rate of
60 Hz and feeding the data into the model resulted in no
significant energy impact. This makes our App very
efficient for recording activity data throughout the day.

The reason why our overhead is so low is twofold. (1)
Our model handles very small data. It only needs to
receive 1D segments of size 60 with 3 channels, as
compared to multidimensional image data in a typical
Computer Vision setting; the model itself is only 119 KB.
(2) Our model takes advantage of the hardware accelerated
and efficient Core ML framework released just this year
and optimized specifically for iOS devices.

Figure 7: Confusion matrix of test results.

6. Discussion
In conclusion, we are very pleased with the results of

our project. We accomplished exactly what we were
hoping for when we started the project. Our model
achieved remarkable results on our test set, and performed
perfectly when demoed both at the poster session and in
other real-world scenarios. As discussed earlier, the model
was only trained by three users. And while we collected
data from doing activities in a variety of locations and
times, the model may still fail to generalize when tested on
users with very different body shapes and motion
behaviors. We hope to get the resources to run an even
larger test with hundreds of users as this would drastically
improve the model’s ability to generalize. However, in
reality this may not be necessary if we allow a user to train
their own model on their own device. This would develop
a personalized model specifically for the user, and the
model would learn overtime from the user’s actions.

We are also interested in looking into adding more
activities and possibly gathering data from additional
sensors like the gyroscope if needed. We also want to
experiment with gathering motion data from smart
watches as well which are becoming increasing popular.
Human activity recognition on mobile devices can be
immensely important to providing personal data to health
and fitness based applications. We already see apps such
as Google Fit and Apple Health integrating activity
recognition into their applications. We believe having a
real-time activity recognition model on a mobile device
that can learn from a user overtime will be future of
human activity recognition.

7. Contributions

We both worked together on the two main parts of the
project: (1) the mobile application code (used for data
logging and the realtime activity recognition) and (2) the
deep learning code (used for training and evaluating the
model in Tensorflow/Keras). We encountered numerous
issues when implementing this project, so we were both
actively assisting in debugging. We both spent time
researching various aspects of the project as well such as
Apple’s iOS frameworks and deep learning concepts such
as convolutions neural networks. We both contributed to
recording data for the dataset. Lastly we both participated
in the poster session.

8. References
[1] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E.

Hinton. "Imagenet classification with deep
convolutional neural networks." Advances in neural
information processing systems. 2012..

[2] Anguita, Davide, et al. "Human activity recognition on
smartphones using a multiclass hardware-friendly
support vector machine." International workshop on
ambient assisted living. Springer Berlin Heidelberg,
2012.

Figure 9: Mobile app developed for
recording time series signals and real-time
activity recognition.

Figure 8: Low energy impact when
continuously recording from the device
sensors and feeding segments into model.

