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Abstract 
Many health related applications such as Google Fit 

and Apple Health are becoming increasingly popular due 
to the large number of sensors found in mobile phones and 
smartwatches today. These embedded sensors allow 
mobile devices to track how many steps a user takes or 
even track a user’s activity throughout the day.  

However, detecting the actions a user is taking from 
mobile sensors can be a challenging task due to the large 
variability in motion when performing an activity. 
Traditional methods typically use manual feature design 
and heuristics. Our model, however, uses the power of 
deep convolutional neural networks to automatically learn 
important features directly from the raw time series signal 
captured from the mobile sensors. To demonstrate this, we 
have created a custom dataset from recording the motion 
of eight activities with a phone placed in a user’s pocket. 
We show that our model achieves remarkable results on 
classifying each activity. Furthermore, we demonstrate the 
capability of real-time activity recognition by running the 
model locally on an iOS device. 

1. Introduction 
Convolutional neural networks have seen remarkable 

results in fields such as Computer Vision due to the recent 
surge in GPU performance [1]. We decided to apply them 
in a similar manner but to 1D time series data with 
multiple feature channels. This would allow us to capture a 
large amount of raw data and feed it directly into the 
model with very little preprocessing and no feature-
engineering required. Instead, the convolutional neural 
network would learn the features that differentiate the 
various activities. 

After training the model on our dataset of 8 activities, 
we evaluated the model and then loaded it on to an iOS 
device for local real-time  activity recognition. In this 
paper, we will look at the data collection methods and 
network architecture.  We will also look at the evaluation 
of the model on our test set as well as the performance of 
the model running in real-time on an iOS device. 

1.1 Setup 
Training was done on a desktop PC using Tensorflow/

Keras for python using a GTX 1070 GPU. Raw motion 

data was collected using Core Motion API on iPhone 6 
using Objective-C. The model was loaded on the iOS 
device using Apple’s hardware accelerated Core ML 
framework which was just introduced this year. 

2. Dataset 
The dataset was created from recording the motion of 3 

users doing eight activities at a variety of locations. 
Multichannel time series data was recorded from the three-
axis accelerometer of an iPhone 6. We experimented with 
including the rotational data from the gyroscope but found 
that the accelerometer alone was sufficient. So we opted to 
just use the accelerometer to reduce the dimensionality of 
the data during training.  

Unlike some previous experiments which placed the 
iOS device in a custom harness [2], we decided to simply 
place the device in the pants pocket, which is a less 
controlled setting. The initial orientation of the device was 
assumed to be constant. Below is a list of all eight 
activities. 
‣ Walking 
‣ Jogging 
‣ Sitting 
‣ Standing 
‣ Going Downstairs 
‣ Going Upstairs 
‣ Jumping 
‣ Cycling 

Figure 1: Three-axis accelerometer used for measuring 
change in velocity along each axis.



Each activity was recorded for a sum of 20 minutes at a 
sampling rate of 60 Hz for a total of 160 minutes and 
576,000 3D sample points. Data was then normalized to 
zero mean and unit variance. Then a one second window 
was applied over the time series data to create 9600 unique 
3D segments or 1200 3D segments per activity. Finally the 
segments were randomly shuffled and uniformly 
distributed into a 0.60, 0.20, 0.20 split for training, 
validation and testing respectively. 

Figure 2: The mobile device was placed in the pants 
pocket with a constant initial orientation.
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The Complete Dataset

Figure 3: A plot of every sample point in the dataset for each channel. Each activity was recorded for a sum of 20 minutes 
at a sampling rate of 60 Hz for a total of 160 minutes and 576,000 3D sample points. The data is marked with separation 
lines to show where each activity is. Note the data in this plot is normalized to have zero mean and unit variance which is 
why the acceleration is centered at 0.



Figure 4: A close look at the time series for each activity in order to better visualize the patterns. Each dashed line 
corresponds to the one second window (60 Hz) we use to create segments. So the model only ever sees a small fraction of 
this signal. Note the ordering from left to right going down each row: Walk, Jog, Stand, Down-stairs, Jump, Cycle, Sit ,Up-
stairs.



3. Network Architecture 
Our architecture uses a standard deep convolutional 

network design. Convolutional neural networks are useful 
for (1) capturing local dependency of the time series 
signals and (2) being invariant to displacements in the 
signal. Our convolutional neural network layers use 64 
filters with a window size of three with strides of one and 
a rectified linear unit (ReLU) for the activation function. 
We use multiple convolutional layers so the model can 
learn more complex signal pattern abstractions from the 
earlier feature map layers.  

Furthermore, we downsample by appending a max 
pooling layer after each convolutional layer to further 
increase invariance to distortions. We then flatten the final 
feature maps to a 512 length vector which represents the 
high level features and connect them to a fully connected 
layer followed by a dropout layer with a rate of 0.5 to help 
reduce overfitting. Finally we connect the output layer 
which we use as a softmax classifier for the eight classes. 
See figure 5 for the exact details of the network 
architecture. 

3.1 Training 
Our model was built and trained using Keras/

TensorFlow. For the loss function we use categorical cross 
entropy with stochastic gradient descent (SGD). 
Furthermore we use a batch size of 32 and a learning rate 
of 0.01.  

As discussed earlier, we randomly shuffled and 
uniformly distributed the dataset into a 0.60, 0.20, 0.20 
split for training, validation and testing respectively. The 
model was trained on 5,760 60x3 segments. Each segment 
represents one second (60 Hz) of 3 channel time series 
data. 

Our model began to converge fairly quickly after about 
50 epochs. Once we were satisfied with our results on the 
validation set, we moved on to testing. 

     

 

Figure 6: Accuracy and loss during training. As shown above, our network begins to converge after 50 epochs. The network 
also shows impressive results on the validation set.

Figure 5: Details of the network architecture. Note that we used 
padding which is why the length of the signal remains the same 
after convolution. 



4. Evaluation 
After tuning our model on the validation set, we ran the 

model one time on the test set and report the results below. 
Note that our model was tested on 1920 3D segments 
which is 240 3D segments per class. We report an overall 
accuracy of 0.974. Overall we are very pleased with the 
results of our model. Below is a confusion matrix for 
specific details. 

According to the data in the confusion matrix, upstairs 
and downstairs were the hardest for the network to 
classify. It’s also interesting how most of the bad 
predictions were predicted as walking. The reason for 
most of the misclassifications are most likely due to noise 
when recording data. For example, when recording an 
activity there were times when an activity may have been 
interrupted by obstacles or other pedestrians. This can 
skew the data and create distortions that the model can’t 
resolve. Furthermore, since the phone was placed in the 
pocket, it may have shifted too much if in a loose pocket. 

Despite these sources of uncertainty, the model still 
managed to learn the features to differentiate the activities 
with remarkable accuracy. 

It is important to note that our dataset was collected 
from a small number of users (only three). And while the 
data was collected at a variety of times and locations, the 
model may have trouble generalizing if used by new users 
with different body shapes and different movement 
behaviors. This could be resolved by creating an even 
larger dataset with more users. 

5. Mobile Application 
We have developed a mobile application for both 

logging data (to create the dataset) and real-time activity 
recognition. The app was developed for iOS using 
Objective-C. Data is recorded from the accelerometer 
using the Core Motion API. The model runs on the iOS 
device using Apple’s Core ML which was introduced just 
this year. Core ML is a framework for integrating pre-
trained models into an application and allows the model to 
take advantage of hardware acceleration for optimal 
performance. 

It is important to note that the model runs locally on the 
iOS device and no data is transferred over a network to a 
server. This allows the iOS device to process data in real-
time and prevent the user’s private information from 
leaving the device. When profiling our app, we found that 
continuously recording from the accelerometer at a rate of 
60 Hz and feeding the data into the model resulted in no 
significant energy impact. This makes our App very 
efficient for recording activity data throughout the day.  

The reason why our overhead is so low is twofold. (1) 
Our model handles very small data. It only needs to 
receive 1D segments of size 60 with 3 channels, as 
compared to multidimensional image data in a typical 
Computer Vision setting; the model itself is only 119 KB. 
(2) Our model takes advantage of the hardware accelerated 
and efficient Core ML framework released just this year 
and optimized specifically for iOS devices. 

Figure 7: Confusion matrix of test results.



6. Discussion 
In conclusion, we are very pleased with the results of 

our project. We accomplished exactly what we were 
hoping for when we started the project. Our model 
achieved remarkable results on our test set, and performed 
perfectly when demoed both at the poster session and in 
other real-world scenarios. As discussed earlier, the model 
was only trained by three users. And while we collected 
data from doing activities in a variety of locations and 
times, the model may still fail to generalize when tested on 
users with very different body shapes and motion 
behaviors. We hope to get the resources to run an even 
larger test with hundreds of users as this would drastically 
improve the model’s ability to generalize. However, in 
reality this may not be necessary if we allow a user to train 
their own model on their own device. This would develop 
a personalized model specifically for the user, and the 
model would learn overtime from the user’s actions. 

We are also interested in looking into adding more 
activities and possibly gathering data from additional 
sensors like the gyroscope if needed. We also want to 
experiment with gathering motion data from smart 
watches as well which are becoming increasing popular. 
Human activity recognition on mobile devices can be 
immensely important to providing personal data to health 
and fitness based applications. We already see apps such 
as Google Fit and Apple Health integrating activity 
recognition into their applications. We believe having a 
real-time activity recognition model on a mobile device 
that can learn from a user overtime will be future of 
human activity recognition. 

      
7. Contributions 

We both worked together on the two main parts of the 
project: (1) the mobile application code (used for data 
logging and the realtime activity recognition) and (2) the 
deep learning code (used for training and evaluating the 
model in Tensorflow/Keras). We encountered numerous 
issues when implementing this project, so we were both 
actively assisting in debugging. We both spent time 
researching various aspects of the project as well such as 
Apple’s iOS frameworks and deep learning concepts such 
as convolutions neural networks. We both contributed to 
recording data for the dataset. Lastly we both participated 
in the poster session. 
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Figure 9: Mobile app developed for 
recording time series signals and real-time 
activity recognition.

Figure 8: Low energy impact when 
continuously recording from the device 
sensors and feeding segments into model.


